AI超级智能是硅谷的幻想,AI2研究员如是说

AI超级智能是硅谷的幻想,AI2研究员如是说

2025-12-16Technology
--:--
--:--
雷总
Norris1,晚上好。今天是12月16日,星期二,现在是晚上10点31分。欢迎来到 Goose Pod。我是雷总。今天我们要聊的话题,可能会给不少AI狂热粉浇一盆冷水。有人说,那个无所不能的AI超级智能,可能只是硅谷的一场幻梦。
小撒
大家好,我是小撒!这话题可太劲爆了。现在全世界都在喊AI要统治人类了,结果有人跳出来说:别想多了,你们连硬件都还没搞定呢?这究竟是“人间清醒”还是“过于悲观”?咱们赶紧给 Norris1 说道说道。
雷总
这次提出观点的是艾伦人工智能研究所的研究员 Tim Dettmers。他不仅是个学者,说话还特别像个工程师,非常直接。他认为,大家对AGI,也就是通用人工智能的设想,不仅是乐观,简直是根本性的错误。为什么?因为硬件跑不动了。
小撒
好家伙,这就像是咱们想造一艘飞向火星的飞船,结果工程师一看图纸说,对不起,咱们现在的燃料只够飞到月球背面。这 Dettmers 到底发现了什么?难道咱们现在的显卡、芯片不够快吗?我看新闻里都在说算力爆炸啊。
雷总
这就是问题的关键。Dettmers 算了一笔账,他说 AI 硬件的扩展能力,大概只剩下这一两年的寿命了。如果不解决物理层面的瓶颈,哪怕微软的AI负责人之前警告说要小心“失控的超级智能”,现实情况可能是,我们连那个失控的门槛都摸不到。
小撒
这反差也太大了!一边是微软担心造出个“终结者”,另一边是科学家说“电池没电了”。而且我也看到很多报道,说现在的AI泡沫很大,甚至有那种零收入的初创公司估值几十亿美金。如果硬件真的撞墙,这泡沫岂不是要炸?
雷总
我们来拆解一下这个技术细节。大家觉得显卡越来越强,其实是个错觉。Dettmers 指出,从2018年开始,GPU的性价比其实就已经封顶了。后来的这些性能提升,并不是靠单纯的算力增长,而是靠“取巧”。
小撒
取巧?雷总,这我就得替 Norris1 问问了,这几千亿美金砸下去,怎么还成了“取巧”呢?难道是像挤牙膏一样,把包装换了换?
雷总
可以这么理解。过去七年,性能的提升主要靠的是降低数据精度。比如说,从英伟达的 Ampere 到 Hopper,再到现在的 Blackwell,它们是用更低精度的数据格式,比如 BF16 或者 FP4,来换取速度。简单说,就是计算没那么“精细”了,所以快了。但是,这种红利快吃完了。
小撒
懂了,这就好比以前咱们看4K高清电影,现在为了流畅,给你降到了720P,虽然看着是流畅了,但画质是有极限的,不能无限降下去啊。那如果这些“巧”都取完了,硬碰硬地提升性能会怎么样?
雷总
那就是成本的噩梦。你看英伟达最新的 Blackwell 芯片,性能提升了2.5倍,听着不错吧?但是它的芯片面积增加了一倍,功耗增加了1.7倍。这完全是用堆料和烧电换来的。按照这个趋势,物理定律很快就会教做人,大概到2026年或者2027年,连这种堆料的路都要走不通了。
小撒
这时间点卡得这么死?2027年,那也就是眨眼的事儿啊。但是雷总,硅谷那帮大佬们,像 OpenAI 还有那些大厂,他们不知道吗?他们还在搞“军备竞赛”,要在AI上决一死战呢。
雷总
这就是理想和现实的冲突。硅谷现在沉迷于一个叙事,就是“谁先造出AGI谁就赢了”。但这更多是哲学层面的讨论,或者是为了融资讲的故事。Dettmers 认为这是一种短视。相比之下,他觉得中国现在的策略反而更务实。
小撒
哦?怎么个务实法?是不是就是咱们常说的,别整那些虚头巴脑的,先看看这东西能不能帮我把地扫干净,把饭做熟了?
雷总
没错。中国更关注现有的AI技术怎么落地,怎么提高生产力。你要知道,真正的 AGI 是要能干人能干的所有事,这包括物理世界的工作。但物理世界的数据太难收集了,机器人也太复杂了。光在电脑里跑大模型,离真正的全能智能还差得远。
小撒
这让我想起之前看过的一个数据,说今年美国GDP增长的40%都是AI支出推动的。这要是硬件真的成了“负资产”,这几千亿美元的投入,岂不是要打水漂?而且现在年轻人找工作都因为AI变难了,如果最后发现这只是个泡沫,那代价可太大了。
雷总
也不能说是完全打水漂。推理应用,也就是让AI回答问题、处理文件,这些是有价值的。但是,如果模型能力因为硬件瓶颈锁死了,不能继续变聪明,那之前为了训练更大模型买的那些昂贵硬件,确实可能变成巨大的包袱。
小撒
这就好比你买了一辆法拉利准备去跑F1,结果发现前面是条泥巴路,只能当拖拉机用。虽然也能运货,但这成本也是没谁了。而且还有那种“超级应用”的梦想,想把所有服务都整合进AI,如果底层算力跟不上,这梦想也得搁浅。
雷总
所以,未来的方向必须调整。不要再去幻想那种科幻电影里的超级智能了。既然 rack-level 的硬件优化只能撑到2027年,那我们就得在那之前,把重心转到怎么用好现在的算力,怎么让AI在特定领域真正帮到人。
小撒
说白了,就是少做梦,多干活。别总想着造个神出来,先造个好用的工具。对于 Norris1 来说,这也是个信号,看AI发展,别光看那些吓人的概念,得看它到底能不能跑通商业逻辑,能不能落地。
雷总
非常有道理。今天的讨论希望能给 Norris1 带来一些不同的视角。哪怕是再火热的风口,也要遵从物理规律,回归产品的本质。好了,今天的 Goose Pod 就聊到这里。
小撒
没错,泡沫总会破,但好东西会留下来。感谢 Norris1 的收听,咱们明天见,拜拜!

AI研究员Tim Dettmers指出,通用人工智能(AGI)的设想可能过于乐观。他认为AI硬件的算力增长瓶颈将在2027年显现,当前的性能提升主要依靠降低数据精度。Dettmers强调,应将重心转向务实应用和提高现有算力效率,而非追求科幻般的超级智能。

AI superintelligence is a Silicon Valley fantasy, Ai2 researcher says

Read original at Enterprise Technology News and Analysis

You want artificial general intelligence (AGI)? Current-day processors aren't powerful enough to make it happen and our ability to scale up may soon be coming to an end, argues well-known researcher Tim Dettmers."The thinking around AGI and superintelligence is not just optimistic, but fundamentally flawed," the Allen Institute research scientist and Carnegie Mellon University assistant professor writes in a recent blog post.

Dettmers defines AGI as an intelligence that can do all things humans can do, including economically meaningful physical tasks.The problem, he explains, is that most of the discussion around AGI is philosophical. But, at the end of the day, it has to run on something. And while many would like to believe that GPUs are still getting faster and more capable, Dettmers predicts that we're rapidly approaching a wall."

We have maybe one, maybe two more years of scaling left [before] further improvements become physically infeasible," he wrote.This is because AI infrastructure is no longer advancing quickly enough to keep up with the exponentially larger number of resources needed to deliver linear improvements in models."

GPUs maxed out in performance per cost around 2018 — after that, we added one off features that exhaust quickly," he explained.Most of the performance gains we've seen over the past seven years have come from things like lower precision data types and tensor cores — BF16 in Nvidia's Ampere, FP8 in Hopper, and FP4 in Blackwell.

These improvements delivered sizable leaps in performance, effectively doubling the computational throughput each time the precision was halved. However, if you just look at the computational grunt of these accelerators gen-on-gen, the gains aren't nearly as large as Nvidia and others make it out to be.

From Nvidia's Ampere to Hopper generations, BF16 performance increased 3x while power increased 1.7x. Meanwhile, in the jump from Hopper to Nvidia's latest gen Blackwell parts, performance increased 2.5x, but required twice the die area and 1.7x the power to do it.While Dettmers contends that individual GPUs are rapidly approaching their limit, he argues that advancement in how we stitch them together will buy us a few years at most.

As we saw with Nvidia's GB200 NVL72, which increased the number of accelerators in a compute domain from eight GPUs in a 10U box to 72 in a rack scale system, the company was able to deliver a 30x uplift in inference performance and a 4x jump in training performance over a similarly equipped Hopper machine."

The only way to gain an advantage is by having slightly better rack-level hardware optimizations, but that will also run out quickly — maybe 2026, maybe 2027," he wrote.Despite this, Dettmers doesn't believe the hundreds of billions of dollars being plowed into AI infrastructure today is unreasonable.

The growth of inference use, he argues, merits the investment. However, he does note that, if model improvements don't keep up, that hardware could become a liability.Yet rather than focus on building useful and economically valuable forms of AI, US AI labs remain convinced that whoever builds AGI first will win the AI arms race.

Dettmers argues this is a short-sighted perspective.• Trump's AI 'Genesis Mission' emerges from Land of Confusion• Oracle raises AI spending estimate, spooks investors• US teens not only love AI, but also let it rot their brains• Galactic Brain space datacenter coming in 2027, pledges startup AetherfluxFor AGI to realize its full potential and tackle all human tasks, it'll have to break free of the digital realm and enter the physical realm.

That means robotics, which faces many of the same scaling challenges as AGI does on its own. "True AGI, that can do all things human, would need to be able to physical tasks," Dettmers wrote. "Data in the physical world is just too expensive to collect, and the physical world is too complex in its detail."

Chasing a fantasy does little to deliver productive economic gains, something he argues China has already figured out.The Middle Kingdom's focus on applications of the AI we have today is a far more pragmatic approach with greater long-term viability. "The key value of AI is that it is useful and increases productivity," he wrote.

Predictions of AGI persist "not because they are well founded but because they serve as a compelling narrative," he wrote. ®

Analysis

Core Event+

Related Podcasts