科学家发明神奇“变形电子墨水”,有望催生新一代柔性设备

科学家发明神奇“变形电子墨水”,有望催生新一代柔性设备

2025-07-01Technology
--:--
--:--
David
晚上好 user111,我是 David。现在是周二晚间11点44分,欢迎收听专为您打造的 <Goose Pod>。
Ema
嗨,我是 Ema!今天我们来聊一个超级酷的话题:科学家发明了一种神奇的“变形电子墨水”,它有望催生新一代的柔性设备。
David
我们开始吧。这项技术听起来像是科幻电影里的情节,但它确实发生了。想象一下,一种可以打印出来的电路,在加热后能够在坚硬和柔软两种状态之间自由切换。
Ema
没错!就像电影《终结者》里的液态金属机器人一样,可以随意变形。这种新型的“电子墨水”就是实现这个想法的关键。它能让我们的电子设备变得既坚固又灵活,简直不可思议。
David
你说得很形象,Ema。这项技术的核心是一种包含金属镓的墨水。当用它打印的电路被加热时,它的刚度会发生巨大变化。实验数据显示,加热后材料的柔软度可以增加1400倍以上。
Ema
1400倍!太惊人了。这意味着你的手机在口袋里时可能像一块坚硬的塑料,保护屏幕不被刮花,但当你拿出来握在手里时,它又会变得像橡胶一样柔软,完美贴合你的手掌。
David
正是如此。这种特性为未来的个人电子产品、医疗设备和机器人技术开辟了全新的可能性。研究人员已经用它制造出了一些原型设备,来展示它的巨大潜力。
Ema
是啊,比如一种可穿戴健康设备,平时是硬的,戴在手腕上很方便,但一旦接触到皮肤,它就会变软,戴起来特别舒服。还有更厉害的,一种可以植入大脑的探针!
David
是的,这个大脑植入物的例子非常能说明问题。在手术植入时,它需要保持刚性,以便医生能精准地放置到预定位置。而一旦进入大脑,它就会变得柔软,从而减少对脑组织的刺激和炎症反应。
Ema
这简直是医学领域的福音!它完美地解决了硬质设备在人体内可能引发的各种问题。这项技术不仅仅是酷,它真的能改善人们的生活质量,甚至拯救生命。我们就从这里开始,深入聊聊它背后的故事吧。
David
要理解这项发明的重大意义,我们首先需要了解当前电子设备领域的现状。长久以来,电子产品基本分为两大阵营:一类是像智能手机和笔记本电脑这样的刚性设备。
Ema
嗯,就是我们平时用的这些,它们性能强大,非常耐用,但缺点就是硬邦邦的,没什么灵活性。你总不能把你的笔记本电脑卷起来放进口袋里吧。
David
对。另一类则是以可穿戴设备为代表的柔性系统。它们佩戴舒适,可以弯曲,但制造工艺更复杂,而且在性能和集成度上往往不如刚性设备。如何在两者之间找到平衡,一直是个难题。
Ema
我明白了,这就好比我们想要一双鞋,既要有登山鞋的坚固和支撑,又要有跑鞋的轻便和柔软。听起来有点贪心,但这确实是用户的真实需求。所以科学家们一直在寻找一种“可变刚度”的材料。
David
说得好。而这次的主角,就是“镓”这种金属元素。它有一个非常独特的物理特性:在室温下是固体,但它的熔点非常低,只有29.8摄氏度,略低于人体体温。
Ema
哇,那岂不是说,一块固体的镓金属,放在手心里就会融化成液体?太神奇了!这不就是实现“软硬兼施”的完美材料吗?为什么以前没有人用它呢?
David
问到点子上了。虽然镓的潜力巨大,但将它用于打印电子产品却困难重重。首先,液态镓的表面张力非常高,就像水滴在荷叶上会凝结成球一样,它很难铺展开。
Ema
哦,我懂了,就像很难用一颗颗滚来滚去的水珠画出一条平滑的线。那另一个困难呢?你之前好像提到了氧化。
David
是的,镓在空气中极易氧化,表面会形成一层氧化“外壳”。这层外壳会阻止液滴之间相互融合,也影响了它的导电性。这就好比给每个金属颗粒都穿上了一件绝缘外套。
Ema
原来如此,这些小小的金属颗粒虽然彼此靠得很近,但因为这层“外壳”的存在,它们无法真正连接起来形成通路。所以,关键就是要想办法脱掉这件“外套”!
David
完全正确。韩国科学技术院(KAIST)和首尔大学的研究团队提出了一个绝妙的解决方案。他们开发了一种工艺,将微米级的镓颗粒分散在一种聚合物基质中,制成一种像墨水一样的物质。
Ema
听起来像是在制作一杯特殊的“金属鸡尾酒”。他们把金属镓做成微小的颗粒,然后混入一种类似凝胶的东西里,这样就可以像普通墨水一样打印了,对吗?
David
可以这么理解。更关键的是他们使用的溶剂——二甲基亚砜(DMSO)。当打印好的电路被轻微加热时,这种溶剂会分解,创造出一个弱酸性环境。正是这个酸性环境,神奇地剥离了镓颗粒表面的氧化层。
Ema
啊哈!所以加热不仅是为了融化镓,更是为了触发一场化学反应,给这些金属颗粒“洗个澡”,把那层碍事的“外壳”洗掉!这样它们就能融为一体,形成导电的通路了。这个设计太巧妙了!
David
这项技术的核心成就,正如研究合著者、KAIST的Jae-Woong Jeong教授所说,在于通过创新的化学方法克服了液态金属打印的长期挑战,实现了在室温下制造高分辨率、大面积、刚度可调的电路。
Ema
听起来真让人振奋!这不仅仅是一种新材料,更是一整套全新的制造工艺。它让那些曾经只存在于想象中的设备,离我们又近了一大步。不过,这个过程听起来这么完美,难道就没有遇到什么冲突或者难题吗?
David
当然有。任何突破性的技术都伴随着需要克服的冲突与挑战。最大的“冲突”其实是物理定律本身。镓的高表面张力和易氧化性,是其固有的物理化学性质,这是科学家们必须正面应对的首要难题。
Ema
没错,你不能跟金属说‘嘿,请你不要氧化’。这就像一个天生的矛盾:我们之所以选择镓,是因为它独特的熔点;但恰恰是它的这些特性,给制造带来了麻烦。科学家们就像在和一个非常“固执”的舞伴跳舞,必须找到引领它的技巧。
David
很好的比喻。这个“技巧”就是他们开发的pH控制化学烧结工艺。在找到这个方法之前,肯定经历了无数次的失败。比如,加热温度控制不当,可能导致溶剂分解不完全,或者过度分解破坏电路结构。每一步都充满了变数。
Ema
我想,另一个冲突点可能来自于应用层面。当你想把一项新技术推向市场时,必须考虑成本和量产的可行性。这项技术听起来很尖端,那么用到的材料和工艺会不会非常昂贵,导致它只能停留在实验室里?
David
这是一个非常现实的问题。不过,研究报告中提到,这种电子墨水与丝网印刷和浸涂等常见的制造技术兼容。这是一个积极的信号,意味着它有潜力整合到现有的生产线中,从而控制成本。
Ema
哦,那就好!丝网印刷,听起来就像我们印T恤图案那样,对吧?如果能用这么成熟的技术来生产,那大规模应用的可能性就大大增加了。这就解决了“造得出来”和“造得起”之间的矛盾。
David
是的。但还有更深层次的冲突,那就是不同利益相关者之间的需求矛盾。设备制造商追求的是低成本和高效率;而医生和患者,尤其是在医疗植入物领域,他们最关心的是安全性和生物相容性。
Ema
我明白了。比如,制造商可能想用最简单的方式加热电路来激活它,但医生会担心这个加热过程会不会对周围的身体组织造成伤害。所以,科学家不仅要解决技术难题,还要在不同应用场景的苛刻要求之间找到平衡点。
David
精确地说,这种平衡本身就是一种挑战。例如,为了让大脑探针在植入后变得足够柔软,你需要精确控制材料的最终状态。如果它不够软,依然会损伤组织;如果变得太软,又可能失去结构完整性。这其中的拿捏非常考验技术水平。
Ema
所以,这不仅仅是“硬”和“软”两个选项,而是要在成百上千种可能的柔软度中,找到最完美的那一个。这背后需要大量的实验数据和精密的控制。听起来,这项技术的每一步都充满了智慧和挑战。
David
确实如此。谈到这项技术的影响,可以说是相当深远的。它首先冲击的就是医疗设备领域。正如我们之前讨论的,能够改变形态的植入物将极大地提升病人的治疗体验和康复效果。
Ema
是啊,想象一下,未来的心脏起搏器或者胰岛素泵,植入时是微小的硬质设备,便于医生操作。植入后,它们会变得像你身体组织一样柔软,你甚至感觉不到它的存在。这对于需要终身佩戴这些设备的患者来说,生活质量将得到巨大改善。
David
这正是其革命性所在。它将医疗植入物从一个“异物”变成了一个能与身体和谐共存的“伙伴”。除了植入物,在柔性机器人领域,这项技术同样能带来颠覆性的影响。机器人将不再是冷冰冰的机器。
Ema
对!机器人可以拥有“肌肉”了!它们可以根据任务需要,在坚硬的骨骼和柔软的肌肉之间切换。比如一个护理机器人,在移动重物时可以变得很强壮,但在为病人翻身时,手臂又能变得非常柔软,避免造成任何伤害。
David
这个例子很贴切。这种能力将大大扩展机器人的应用范围,尤其是在那些需要与人密切互动的场景,如医疗护理、教育和家庭服务。而在我们普通人最关心的消费电子领域,影响同样值得期待。
Ema
当然!我们的手机、手表、耳机,一切都可能因此而改变。也许未来的手机可以随意折叠、卷曲,甚至拉伸,而不用担心屏幕或内部电路会损坏。这会彻底解放工业设计师的想象力,创造出各种形态奇特的电子产品。
David
总结来说,这项技术的核心影响在于,它打破了“形式追随功能”的传统设计束缚。未来的电子设备将能够动态地改变自身形态来适应不同的功能需求,从而真正实现“形式与功能的统一”。这是一个全新的设计哲学。
David
展望未来,这项技术的发展趋势是明确的。首先是材料的进一步优化。虽然镓已经非常出色,但科学家们肯定会继续探索其他合金或复合材料,以获得更优的性能,比如更快的响应速度或更宽的温度适应范围。
Ema
我也觉得是。也许未来的电子墨水不仅能变软变硬,还能变色、甚至自我修复!就像拥有了生命一样。这会催生出更多超乎想象的应用,比如能够根据环境伪装的智能皮肤,或者可以自我修复的电子纺织品。
David
这些都是非常有可能的方向。其次,是制造工艺的精进。目前技术能打印出50微米,比头发丝还细的特征,但未来的目标肯定是向着更小、更复杂的3D结构迈进,实现真正意义上的“打印一个完整功能设备”。
Ema
哇,直接打印出一个功能完备的机器人或者医疗设备,听起来太酷了!对我们普通人来说,这意味着我们能更快地享受到这些新技术。也许有一天,我们可以在家里根据自己的需要,3D打印一个定制的柔性设备呢!
David
今天我们深入探讨了这项神奇的“变形电子墨水”技术。从它的工作原理,到它如何克服挑战,再到它对医疗、机器人和消费电子领域可能产生的深远影响。核心的启示是,跨学科的创新正在不断打破传统界限。
Ema
没错!一项看似简单的材料创新,背后融合了化学、物理、工程学等多个领域的智慧。它让我们看到,未来的科技将更加人性化,更能适应我们的需求。今天真是大开眼界!
David
今天的讨论就到这里。感谢您的收听,user111。这里是 <Goose Pod>,我们明天再见。
Ema
感谢收听 <Goose Pod>!期待明天与你分享更多有趣的新知!再见啦!

# Comprehensive News Summary: Shape-Shifting Electronic Ink ## News Metadata * **News Title:** Scientists invent weird, shape-shifting ‘electronic ink’ that could give rise to a new generation of flexible gadgets * **Type:** Technology, Robot * **Report Provider/Publisher:** livescience.com * **Author:** Owen Hughes * **Date of Publication:** June 28, 2025 (News Article); May 30 (Journal Publication) * **Relevant News Identifiers:** URL: `https://www.livescience.com/technology/electronics/scientists-invent-weird-shape-shifting-electronic-ink-that-could-give-rise-to-a-new-generation-of-flexible-gadgets` ## Summary of Key Findings and Innovations Scientists have developed a novel "electronic ink" that enables printed electronic circuits to dynamically switch between rigid and soft states when heated. This breakthrough, published on **May 30** in the journal *Science Advances*, holds significant potential for next-generation electronic devices that can adapt their shape or stiffness based on their application and environment. ### Core Technology and Mechanism The innovative ink combines two primary components: 1. **Gallium:** A metal that is solid at room temperature but melts at a temperature just below body temperature, specifically **98.6 degrees Fahrenheit (37 degrees Celsius)**. 2. **Polymer-based solvent:** This solvent breaks down when gently heated. The researchers addressed long-standing challenges associated with using gallium in printed electronics, such as its high surface tension and tendency to oxidize (form a crust) when exposed to air. Their solution involves dispersing microscopic gallium particles into a flexible, ink-like polymer matrix using a solvent called dimethyl sulfoxide (DMSO). When the printed circuit is gently heated, the DMSO solvent breaks down, creating a slightly acidic environment. This acidity effectively strips away the oxide layer from the gallium particles, allowing them to melt and merge to form conductive pathways. The resulting material becomes conductive after heating and can then change its stiffness in response to temperature fluctuations. ### Performance and Capabilities * **Print Resolution:** The ink can be used to print features as small as **50 micrometers (0.002 inches or 0.005 centimeters)**, which is thinner than a human hair. * **Stiffness Modulation:** During tests, the material demonstrated a remarkable change in stiffness, becoming **more than 1,400 times softer when warmed**. * **Manufacturing Compatibility:** The ink is compatible with common manufacturing techniques such as screen printing and dip coating, suggesting potential for larger-scale or 3D-printed electronics in the future. ### Applications and Demonstrations This "variable-stiffness electronics" technology aims to bridge the gap between rigid devices (like smartphones) and soft systems (like wearables), offering the best of both worlds. Potential applications include: * **Medical implants:** Devices that can remain rigid for precise insertion during surgery and then soften inside the body to reduce irritation and inflammation. * **Flexible robotics:** Robots capable of changing their physical properties. * **Personal electronics:** Gadgets that can adapt their form factor for comfort or durability. The research team successfully built two working devices to demonstrate the technology's utility: 1. **Wearable Health Device:** This device behaves as a rigid portable electronic at room temperature but softens upon contact with skin, enhancing user comfort. 2. **Flexible Brain Implant:** Designed to be rigid during surgery for accurate placement, it then softens once inside the brain to minimize irritation and inflammation. ### Expert Commentary Jae-Woong Jeong, a professor of electrical engineering at the Korea Advanced Institute of Science and Technology (KAIST) and a study co-author, emphasized the significance of the research: * "This opens up new possibilities for future personal electronics, medical devices and robotics." * "The core achievement of this research lies in overcoming the longstanding challenges of liquid metal printing through our innovative technology. By controlling the ink's acidity, we were able to electrically and mechanically connect printed gallium particles, enabling the room-temperature fabrication of high-resolution, large-area circuits with tunable stiffness."

Scientists invent weird, shape-shifting ‘electronic ink’ that could give rise to a new generation of flexible gadgets

Read original at livescience.com

(Image credit: Authors: Simok Lee et al.)Scientists have developed a new kind of "electronic ink" that can be used to print electronic circuits capable of switching between rigid and soft states when heated.The technology could pave the way for next-generation electronic devices that change shape or stiffness depending on how and where they’re used, from medical implants that soften inside the body to flexible robotics.

The ink combines gallium, a metal that's solid at room temperature but melts just below body temperature — 98.6 degrees Fahrenheit( 37 degrees Celsius) — with a polymer-based solvent that breaks down when gently heated. The result is a stable, printable substance that becomes conductive after heating and can change its stiffness in response to temperature.

The findings were published May 30 in the journal Science Advances."This opens up new possibilities for future personal electronics, medical devices and robotics," study co-author Jae-Woong Jeong, professor of electrical engineering at the Korea Advanced Institute of Science and Technology (KAIST), said in a statement.

Related: Unique transistor 'could change the world of electronics' thanks to nanosecond-scale switching speeds and refusal to wear outMost electronics today fall into one of two camps: rigid devices like smartphones and laptops, which offer performance and durability at the cost of flexibility; or soft systems like wearables, which are more comfortable to wear but can be harder to fabricate precisely or integrate with more complex components.

Get the world’s most fascinating discoveries delivered straight to your inbox.From hardware to soft-wearSo-called variable-stiffness electronics aim to bridge this gap, enabling devices to shift between hard and soft states as needed.Gallium has long attracted interest in this area because of how differently it behaves in solid and liquid forms.

But using it for printed electronics has proven difficult due to its high surface tension and tendency to oxidize when exposed to air, forming a kind of crust that prevents it from bonding or spreading properly.To address this, the researchers developed a process for dispersing microscopic gallium particles into a polymer matrix — essentially a flexible, ink-like base — using a solvent called dimethyl sulfoxide (DMSO).

When the printed circuit is gently heated, the solvent breaks down and creates a slightly acidic environment. This strips away the oxide layer from the gallium particles, enabling them to melt and merge to form conductive pathways.The resulting ink can be used to print features as small as 50 micrometers (0.

002 inches or 0.005 centimeters) — thinner than a human hair — and can alternate between plastic-like hardness and rubbery softness as needed. The researchers said that the material became more than 1,400 times softer when warmed during tests.The team built two working devices to demonstrate how the bendy technology might be used.

One was a wearable health device that behaves like a rigid portable electronic at room temperature, then softens on contact with skin to improve comfort. The other was a flexible brain implant that remained rigid during surgery so it could be precisely inserted, and then softened once inside the brain to help reduce irritation and inflammation.

The ink can be used with common manufacturing techniques such as screen printing and dip coating, meaning it could be used in larger-scale or 3D-printed electronics in the future, the researchers said."The core achievement of this research lies in overcoming the longstanding challenges of liquid metal printing through our innovative technology," Jeong said in the statement.

"By controlling the ink's acidity, we were able to electrically and mechanically connect printed gallium particles, enabling the room-temperature fabrication of high-resolution, large-area circuits with tunable stiffness."Owen Hughes is a freelance writer and editor specializing in data and digital technologies.

Previously a senior editor at ZDNET, Owen has been writing about tech for more than a decade, during which time he has covered everything from AI, cybersecurity and supercomputers to programming languages and public sector IT. Owen is particularly interested in the intersection of technology, life and work ­– in his previous roles at ZDNET and TechRepublic, he wrote extensively about business leadership, digital transformation and the evolving dynamics of remote work.

Analysis

Impact Analysis+
Event Background+
Future Projection+
Key Entities+
Twitter Insights+

Related Podcasts